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LETTER TO THE EDITOR

Spectral determinant of Schiddinger operators on graphs

Jean Desbois
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F-91405 Orsay Cedex, France

Received 9 November 1999

Abstract. We study the spectral properties of the operateA(+ V (x)) on a graph. 4 is the
Laplacian and/ (x) is some potential defined on the graph). In particular, we derive an expression
for the spectral determinant that generalizes one previously obtained for the Laplacian operator.

For many years, the spectral properties of the Laplacian on graphs have interested physicists [1]

as well as mathematicians [2]. Recently, a compact form for the determinant of the operator

(—A+y) has been obtained [3}(is a constant). Our purpose in this letter is to generalize this

expression to the operatai (+ y), with H = —A + V(x). V(x) is some potential defined at

each pointx of the graph. The spectrum of such operators has already been considered in [4].
To introduce these results, let us consider a graph matfeveftices linked byB bonds.

On each bondo(8), of lengthl,z, we define the coordinate, that runs from O (vertew) to

lap (vertexp). We will also usexg, = l,g — x4p. TO avoid cumbersome notations being

some function defined on the graph, we will simply wijtér) for ¢ (xyp=0), andf(aﬁ) ¢ for

o ¢ (xap) xp.

The spectrum off is determined by imposing continuity of the eigenfunctions and current
conservation at each vertex.

In what follows, we will consider, for each bond, two independent solutipgsandy g,
of the equation

(H+y)y =0. 1)
These functions are chosen to satisfy
Vapla) =1 Vap(B) =0 (2)
Vpa(e) =0 Vpa(B) = 1. (3)
Their Wronskian may be presented as
Wap = Yap ?jffa — Vpa ((jjf:f = ?;ﬁf; (@) = —?jf—:’:(ﬂ). (4)

Let us recall the result of [3]. The authors established that
det—A+y) = "7 ] sinh(,/(y)laﬂ) det(M©) (5)
(@B)
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whereMCis a(V x V) matrix with the elements

my

MO, = coth(/Vlap,) (6)
i=1
M°, = IR if (aB)isabond
7 sinh(/Ylap) *

=0 otherwise @)

(The summation is taken over the, nearest vertices af.)
In this paper, we will show that

1
detH +y) =det-A+ V(@) +y) =[] a— det(M) (8)
@) dryy (@)

with the (V x V) matrix M:

< Oifrgs
Mota = dw il (Ol) (9)
i=1 Oap;
Vs ) .
Myp = Mg, = Ve () = Wy if (aB)isabond
dxaﬂ
=0 otherwise (10)

(All'the  functions appearing in (8)—(10) satisfy (1)—(3).) Itis easy to see that (8)—(10) narrow
down to (5)—(7) wherV (x) = 0. (This is actually true, up to an irrelevant multiplicative
constant.)

We will now establish (8) by computing the Green functi@tx, y) on the graph

(y +H)G(x,y) =68(x —y) 11)
and using the relationship
/ G(x,x)dx =9, Indet(H +y). (12)
Graph

So, let us construct this Green function.
If x is located on the bon@3) andy on another bond, we have

G(x,y) = Ga, )VYap(x) + G(B, y)Vpa(X). (13)
Now, if x andy belong to the same bond, saw), G(x, y) must satisfy, whea — 0
G(y—¢€y)=G(y+e,y) (14)
dG dG
— = — 1 15
d‘x X=y—¢€ dx x=y+e * ( )
The result is
a a X
X<y Gx,y) =G(a, Yap(x) + G(b, Y)Ypa(x) + %w:() (16)
xzy Gx,y) =G, y) Yap(x) + G(b, y) Ypa(x) + %ﬁm@) (17)
(x < y means that point is closer taz thany.)
Current conservation at vertexreads
Za: dG(xaﬁ,'v )7) -0 (18)

4 dx,s
i=1 opi Xop, =0
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If y does not belong to a bond starting fram(13), (18) lead to

oy Ay, o dvrg. o
G, y)(le df[f (a)) + ;G(ﬁi, y) fﬁﬁ

(@) =0, (19)

On the other hand, when belongs to(ab), we get, for the current conservation at vertex

a ((16), (18), (4)):

G(a,y)(; Zx—:‘:(m) +;G<ui,y>?f—u”:(a>+wab<y) =0. (20)
(The nearest neighbours @fare calledu;,i =1, 2, ..., m,; b is one of thew;.)
Current conservation can be written in matrix form
MG =1L. (21)
The matrixM is defined in (9), (10)g andL are two(V x 1) matrices:
G(a1, y) 0
G(a,y) Lo =—=Ya(y)
G= : L= : (22)
G,y Ly = —Ypa(y)
Gay-2,y) 0
With the inverse matrix oM, T = M1, one obtains foG (a, y) andG (b, y):
G(a,y) = TaaLla + TopLy (23)
G, y) =TpaLa+ TppLp. (24)

After simple manipulations, (16) leads to

1
G(y’ )’) = Tau(_wazb(y)) + Tbb(_wfa(y)) + <Tab + Tba - W

> (_wab(y)wbu(y)) (25)

To stick to (12), we must integrate?, (y), ¥2,(y) and, (y) ¥, (). Let us show that
dWab

2 =9 a 26
V=0 g @ (26)
dwba
2 =9 b 27
w Vi = 9y dey (b) (27)
dvrpg dvrap
b I/fab Vfba 8}/ anb (a) ay dxab (b) ay ab ( 8)
Indeed, starting with the equations
(H + V)wab =0 (29)
(H+y)¥p, =0 (30)
we take the derivative of (29) with respectjto

(H +y)0yVab = —Vap- (31)

Obviously,d, V., can be written in the formx(,;, = x, ‘;—f =y'):
Oy Vap(x) = c(X)Wap(x) +d(x)Ppa(x) (32)
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with
c(0) = d(l,) = 0. (33)

This last point emerges from conditions (2), (3) that are satisfied whateger
Determining the unknown functiongx) andd(x) by standard methods, we impose the
auxiliary condition

Cll/fab + d/wba =0. (34)
(29)—(32) and (34) lead to
Yoy +d Yoy = Vap- (39)

Solving the above system, we get, with (33)
* Yap (U)Ypa (u) du

_ 36
c(x) A W (36)
_ * 1/’3;,(14)
Using (32), (34), we arrive at
Oy Vo = Py +d ¥y, (38)

Settingx = 0 in (36)—(38), we recover (26). With = [,,, we recover (28). Moreover,
considering, ¥, instead of, v,,, we should prove that (27) holds.
Let us return to the computation of the trace of the Green function. Equations (25)—(28)

give
dwbu
s dYpa 9y 3ot (a)
G(y,y)=T,,0,—— + Tjp0 b) + T,,0, My + Tpo 0, M), — ——2—.
/(ab) o,y Y dry (@) + Ty ydxba( ) b0y My, ba Oy Map Wor
(39)
Summing over all the bonds and using (4) and (9), we obtain
A
/ G(y,y):Tr(M_layM)—8y<Zln Vs (a)). (40)
Graph @b) dx,p

Finally, with the observation that T 13, M) = 9, IndetM, it is easy to see that (12)
leads to formula (8) (up to an inessential multiplicative constant).

To conclude, let us remark that, for more general boundary conditions than (18), i.e. for
instance

i dG (xep,, ¥)

= raG(a, y). (41)
d‘x“ﬂi

i=1 Xap; =0

(8) still holds if we slightly modify the diagonal elementsMf (M, — My — Ag)-

I acknowledge Professor A Comtet and G Montambaux for discussions.
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