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LETTER TO THE EDITOR

Spectral determinant of Schr̈odinger operators on graphs
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Laboratoire de Physique Théorique et Mod̀eles Statistiques, Université Paris-Sud, B̂at. 100,
F-91405 Orsay Cedex, France

Received 9 November 1999

Abstract. We study the spectral properties of the operator (−1 + V (x)) on a graph. (1 is the
Laplacian andV (x) is some potential defined on the graph). In particular, we derive an expression
for the spectral determinant that generalizes one previously obtained for the Laplacian operator.

For many years, the spectral properties of the Laplacian on graphs have interested physicists [1]
as well as mathematicians [2]. Recently, a compact form for the determinant of the operator
(−1+γ ) has been obtained [3] (γ is a constant). Our purpose in this letter is to generalize this
expression to the operator (H + γ ), with H = −1 +V (x). V (x) is some potential defined at
each pointx of the graph. The spectrum of such operators has already been considered in [4].

To introduce these results, let us consider a graph made ofV vertices linked byB bonds.
On each bond (αβ), of lengthlαβ , we define the coordinatexαβ that runs from 0 (vertexα) to
lαβ (vertexβ). We will also usexβα = lαβ − xαβ . To avoid cumbersome notations,φ being
some function defined on the graph, we will simply writeφ(α) for φ(xαβ=0), and

∫
(αβ)

φ for∫ lαβ
0 φ(xαβ) dxαβ .

The spectrum ofH is determined by imposing continuity of the eigenfunctions and current
conservation at each vertex.

In what follows, we will consider, for each bond, two independent solutions,ψαβ andψβα,
of the equation

(H + γ )ψ = 0. (1)

These functions are chosen to satisfy

ψαβ(α) = 1 ψαβ(β) = 0 (2)

ψβα(α) = 0 ψβα(β) = 1. (3)

Their Wronskian may be presented as

Wαβ ≡ ψαβ dψβα
dxαβ

− ψβα dψαβ
dxαβ

= dψβα
dxαβ

(α) = −dψαβ
dxαβ

(β). (4)

Let us recall the result of [3]. The authors established that

det(−1 + γ ) = γ V−B
2

∏
(αβ)

sinh
(√
(γ )lαβ

)
det(M0) (5)
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whereM0 is a(V × V ) matrix with the elements

M0
αα =

mα∑
i=1

coth(
√
γ lαβi ) (6)

M0
αβ = −

1

sinh(
√
γ lαβ)

if (αβ) is a bond

= 0 otherwise. (7)

(The summation is taken over themα nearest vertices ofα.)
In this paper, we will show that

det(H + γ ) ≡ det(−1 + V (x) + γ ) =
∏
(αβ)

1
dψβα
dxαβ

(α)
det(M) (8)

with the(V × V ) matrixM:

Mαα =
mα∑
i=1

dψαβi
dxαβi

(α) (9)

Mαβ = Mβα = dψβα
dxαβ

(α) = Wαβ if (αβ) is a bond

= 0 otherwise. (10)

(All theψ functions appearing in (8)–(10) satisfy (1)–(3).) It is easy to see that (8)–(10) narrow
down to (5)–(7) whenV (x) ≡ 0. (This is actually true, up to an irrelevant multiplicative
constant.)

We will now establish (8) by computing the Green functionG(x, y) on the graph

(γ +H)G(x, y) = δ(x − y) (11)

and using the relationship∫
Graph

G(x, x)dx = ∂γ ln det(H + γ ). (12)

So, let us construct this Green function.
If x is located on the bond(αβ) andy on another bond, we have

G(x, y) = G(α, y)ψαβ(x) +G(β, y)ψβα(x). (13)

Now, if x andy belong to the same bond, say(ab),G(x, y) must satisfy, whenε → 0

G(y − ε, y) = G(y + ε, y) (14)
dG

dx

∣∣∣∣
x=y−ε

= dG

dx

∣∣∣∣
x=y+ε

+ 1. (15)

The result is

x 6 y G(x, y) = G(a, y)ψab(x) +G(b, y)ψba(x) +
ψab(y)ψba(x)

Wab

(16)

x > y G(x, y) = G(a, y)ψab(x) +G(b, y)ψba(x) +
ψba(y)ψab(x)

Wab

. (17)

(x < y means that pointx is closer toa thany.)
Current conservation at vertexα reads

mα∑
i=1

dG(xαβi , y)

dxαβi

∣∣∣∣∣
xαβi=0

= 0. (18)
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If y does not belong to a bond starting fromα, (13), (18) lead to

G(α, y)

( mα∑
i=1

dψαβi
dxαβi

(α)

)
+

mα∑
i=1

G(βi, y)
dψβiα
dxαβi

(α) = 0. (19)

On the other hand, wheny belongs to(ab), we get, for the current conservation at vertex
a ((16), (18), (4)):

G(a, y)

( ma∑
i=1

dψaµi
dxaµi

(a)

)
+

ma∑
i=1

G(µi, y)
dψµia
dxaµi

(a) +ψab(y) = 0. (20)

(The nearest neighbours ofa are calledµi , i = 1, 2, . . . , ma; b is one of theµi .)
Current conservation can be written in matrix form

MG = L. (21)

The matrixM is defined in (9), (10).G andL are two(V × 1) matrices:

G =



G(α1, y)
...

G(a, y)
...

G(b, y)
...

G(αV−2, y)


L =



0
...

La = −ψab(y)
...

Lb = −ψba(y)
...

0


. (22)

With the inverse matrix ofM, T ≡ M−1, one obtains forG(a, y) andG(b, y):

G(a, y) = TaaLa + TabLb (23)

G(b, y) = TbaLa + TbbLb. (24)

After simple manipulations, (16) leads to

G(y, y) = Taa(−ψ2
ab(y)) + Tbb(−ψ2

ba(y)) +

(
Tab + Tba − 1

Wab

)
(−ψab(y)ψba(y)). (25)

To stick to (12), we must integrateψ2
ab(y), ψ

2
ba(y) andψab(y)ψba(y). Let us show that∫

(ab)

ψ2
ab = −∂γ

dψab
dxab

(a) (26)∫
(ab)

ψ2
ba = ∂γ

dψba
dxab

(b) (27)∫
(ab)

ψab ψba = −∂γ dψba
dxab

(a) = ∂γ dψab
dxab

(b) = −∂γMab. (28)

Indeed, starting with the equations

(H + γ )ψab = 0 (29)

(H + γ )ψba = 0 (30)

we take the derivative of (29) with respect toγ :

(H + γ )∂γψab = −ψab. (31)

Obviously,∂γψab can be written in the form (xab ≡ x, dψ
dx ≡ ψ ′):

∂γψab(x) = c(x)ψab(x) + d(x)ψba(x) (32)
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with

c(0) = d(lab) = 0. (33)

This last point emerges from conditions (2), (3) that are satisfied whateverγ is.
Determining the unknown functionsc(x) andd(x) by standard methods, we impose the

auxiliary condition

c′ψab + d ′ψba = 0. (34)

(29)–(32) and (34) lead to

c′ ψ ′ab + d ′ ψ ′ba = ψab. (35)

Solving the above system, we get, with (33)

c(x) = −
∫ x

0

ψab(u)ψba(u)

Wab

du (36)

d(x) =
∫ x

lab

ψ2
ab(u)

Wab

du. (37)

Using (32), (34), we arrive at

∂γψ
′
ab = cψ ′ab + dψ ′ba. (38)

Settingx = 0 in (36)–(38), we recover (26). Withx = lab, we recover (28). Moreover,
considering∂γψba instead of∂γψab, we should prove that (27) holds.

Let us return to the computation of the trace of the Green function. Equations (25)–(28)
give∫
(ab)

G(y, y) = Taa∂γ dψab
dxab

(a) + Tbb∂γ
dψba
dxba

(b) + Tab∂γMba + Tba∂γMab −
∂γ

dψba
dxab

(a)

Wab

.

(39)

Summing over all the bonds and using (4) and (9), we obtain∫
Graph

G(y, y) = Tr(M−1∂γM)− ∂γ
(∑
(ab)

ln
dψba
dxab

(a)

)
. (40)

Finally, with the observation that Tr(M−1∂γM) = ∂γ ln detM, it is easy to see that (12)
leads to formula (8) (up to an inessential multiplicative constant).

To conclude, let us remark that, for more general boundary conditions than (18), i.e. for
instance

mα∑
i=1

dG(xαβi , y)

dxαβi

∣∣∣∣∣
xαβi=0

= λαG(α, y). (41)

(8) still holds if we slightly modify the diagonal elements ofM (Mαα → Mαα − λα).

I acknowledge Professor A Comtet and G Montambaux for discussions.
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